1.4. Колебательный контур.
1.4.1. Свободные колебания в контуре.
Свободные (или собственные) колебания — это колебания в системе под действием внутренних сил после того, как система выведена из состояния равновесия (в реальных условиях свободные колебания всегда затухающие).
Пусть конденсатор ёмкостью C заряжен до напряжения U0 . Энергия, запасённая в конденсаторе составляет
,
При соединении конденсатора с катушкой индуктивности, в цепи потечёт ток I , что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности) в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.
Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора EC = 0. Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна
,
где L — индуктивность катушки, I0 — максимальное значение тока.
После этого начнётся перезарядка конденсатора, то есть заряд конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор, в этом случае, снова будет заряжен до напряжения - U0 .
В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.
Рис 1. Пример: Осциллограмма LC контура во время замыкания заряженного конденсатора на катушку индуктивности.
С = 240нФ(заряженный), L = 360нГн, F0 ≈ 542кГц.
1.4.2. Вынужденные колебания в контуре.
Вынужденные колебания — колебания, происходящие под воздействием внешних периодических сил.
Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.
Наиболее простой и содержательный пример вынужденных колебаний можно получить из рассмотрения гармонического осциллятора и вынуждающей силы, которая изменяется по закону:
.
Консервативный гармонический осциллятор
Второй закон Ньютона для такого осциллятора запишется в виде:
.
Если ввести обозначения:
,
и заменить ускорение на вторую производную от координаты по времени, то получим следующее обыкновенное дифференциальное уравнение:
,
Решением этого уравнения будет сумма общего решения однородного уравнения и частного решения неоднородного. Общее решение однородного уравнения было уже получено здесь и оно имеет вид:
,
где A , φ — произвольные постоянные, которые определяются из начальных условий.
Найдём частное решение. Для этого подставим в уравнение решение вида:
,
и получим значение для константы:
,
Тогда окончательное решение запишется в виде:
.
1.4.3. Резонанс в колебательном контуре.
Резонанс — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при совпадении частоты собственных колебаний с частотой колебаний вынуждающей силы.
В результате резонанса при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротностью. При помощи резонанса можно выделить и/или усилить даже весьма слабые периодические колебания.
В электронных устройствах резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.
Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в индуктивности — процесс, который повторяется многократно, по аналогии с механическим маятником.
При достижении резонанса, импеданс (комплексное сопротивление двухполюсника (электрической цепи, содержащей две точки для соединения с другими цепями) для гармонического сигнала) последовательно соединённых индуктивности и ёмкости минимален, а при параллельном включении — максимален. Резонансные процессы в колебательных контурах используются в элементах настройки, электрических фильтрах. Частота, на которой происходит резонанс, определяется величинами (номиналами) используемых элементов. В то же время, резонанс может быть и вреден, если он возникает в неожиданном месте по причине повреждения, недостаточно качественного проектирования или производства электронного устройства. Такой резонанс может вызывать паразитный шум, искажения сигнала, и даже повреждение компонентов.
Приняв, что в момент резонанса индуктивная и ёмкостная составляющие импеданса равны, резонансную частоту можно найти из выражения
,
где ω = 2πf ;
f — резонансная частота в герцах;
L — индуктивность в генри;
C — ёмкость в фарадах.
Важно, что в реальных системах понятие резонансной частоты неразрывно связано с полосой пропускания, то есть диапазоном частот, в котором реакция системы мало отличается от реакции на резонансной частоте. Ширина полосы пропускания определяется добротностью системы (параметр колебательной системы, определяющий ширину резонанса и характеризующий, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний.).
Рис 2. Эффект резонанса для разных частот внешнего воздействия и коэффициентов затухания.
1.4.4. Связанные цепи.
Если изменение тока в одном из элементов цепи приводит к появлению э.д.с. в другом элементе, то эти два элемента индуктивно связаны, а возникающая э.д.с. называется э.д.с. взаимной индукции.
Степень индуктивной связи двух элементов цепи характеризуется коэффициентом связи
,
где М – взаимная индуктивность элементов цепи,
L 1 и L 2 – индуктивности элементов.
При расчете цепей с взаимной индуктивностью следует на схеме отметить стрелками выбираемые положительные направления токов в ветвях (или контурных токов). Кроме того, одинаковыми условными значками (звездочками, точками, буквами и т.п.) обозначить одноименные зажимы каждой пары индуктивно связанных катушек.
Одноименными называются такие зажимы, при одинаковом положительном направлении токов относительно которых, магнитные потоки самоиндукции и взаимной индукции складываются.
1.4.5. Кварцевый резонатор.
Кварцевый резонатор — прибор, в котором пьезоэлектрический эффект и явление механического резонанса используются для построения высокодобротного резонансного элемента электронной схемы.
На пластинку, кольцо или брусок, вырезанные из кристалла кварца определённым образом, нанесены 2 и более электродов — проводящие полоски.
Пластинка закреплена и имеет собственную резонансную частоту механических колебаний.
При подаче напряжения на электроды благодаря пьезоэлектрическому эффекту происходит изгибание, сжатие или сдвиг в зависимости от того, каким образом вырезан кусок кристалла.
Однако колеблющаяся пластинка в результате того же пьезоэлектрического эффекта создаёт во внешней цепи противо-ЭДС, что можно рассматривать как явление, эквивалентное работе катушки индуктивности в колебательном контуре.
Если частота подаваемого напряжения равна или близка к частоте собственных механических колебаний пластинки, затраты энергии на поддержание колебаний пластинки оказываются намного ниже, нежели при большом отличии частоты. Это тоже соответствует поведению колебательного контура.
Рис 3. Эквивалентная схема.
Условное обозначение кварцевого резонатора (сверху) и его эквивалентная схема (снизу)
C0 — собственная ёмкость кристалла, образуемая кристаллодержателем и/или обкладками резонатора.
C1, L1 — эквивалентная ёмкость и индуктивность механической колебательной системы резонатора.
R1 — эквивалентное сопротивление потерь механической колебательной системы.